Home
Class 12
MATHS
Evaluate : inte^(e^2){1/(logx)-1/((logx...

Evaluate : `int_e^(e^2){1/(logx)-1/((logx)^2)}dx`

Text Solution

AI Generated Solution

To evaluate the definite integral \[ I = \int_{e}^{e^2} \left( \frac{1}{\log x} - \frac{1}{(\log x)^2} \right) dx, \] we can break it down into two separate integrals: ...
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    RD SHARMA|Exercise Solved Examples And Exercises|277 Videos
  • DERIVATIVES AS A RATE MEASURER

    RD SHARMA|Exercise Solved Examples And Exercises|149 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx

Evaluate : int[(1)/(logx)-(1)/((log x)^(2))]dx

int{(1)/((logx))-(1)/((logx)^(2))}dx=?

int[(1)/(logx)-(1)/((logx)^(2))]dx=

Evaluate int e^x(1/logx-1/(x(logx)^2)) dx

Evaluate : int {log(logx)+(1)/((logx)^(2))}dx

Evaluate int_(1)^(2)(logx)/(x)dx

Evaluate : int(e^(5logx)-e^(4logx))/(e^(3logx)-e^(2logx))dx .