Home
Class 12
MATHS
int (dx)/(sqrt3 sinx+cosx)=Aloge tan(Bx+...

`int (dx)/(sqrt3 sinx+cosx)=Alog_e tan(Bx+c)+K` then (A) `A=1/2` (B) `B=-1/2` (C) `C=pi/12` (D) `C=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(4cosx+3sinx)/(2sinx+cosx)dx=ax+b log (2sinx+cosx)+c, then

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

If I=int_(-pi)^pi e^(sinx)/(e^(sinx)+e^(-sinx))dx , then I equals (A) pi/2 (B) 2pi (C) pi (D) pi/4

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx), is pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

int(dx)/(cosx+sqrt(3)sinx) equals: (1) 1/2logtan(x/2+pi/(12))+c (2) 1/2logtan(x/2-pi/(12))+c (3) logtan(x/2+pi/(12))+c (4) logtan(x/2-pi/(12))+c

If int(1)/((x+1)(x-2))dx=Alog_(e)(x+1)+Blog_(e)(x-2)+C , then A + B = ?

The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(cosx)=4sqrt(2) are (a) pi/(12) (b) (5pi)/(12) (c) (7pi)/(24) (d) (11pi)/(36)

int_0^(pi/2) (3+4cosx)/(4+3cosx)^2dx= (A) 3/4 (B) 1/2 (C) pi/4 (D) 1/4