Home
Class 12
MATHS
Evaluate: int(sec^2x)/(1-tan^2x)dx...

Evaluate: `int(sec^2x)/(1-tan^2x)dx`

Text Solution

Verified by Experts

`I = int (sec^2x)/(1-tan^2x)dx`
Let `tanx = t`, then, `sec^2xdx = dt`
Then, `I = int dt/(1-t^2)`
`=>I = 1/2 int [1/(1+t) + 1/(1-t)]dt`
`=> I = 1/2 int dt/(1+t) +1/2 int dt/(1-t)`
`=> I = 1/2log |1+t| - 1/2log |1-t| +c`
`=>I = 1/2 log |1+tanx| - 1/2log |1-tanx| +c`
`=>I = 1/2 log |(1+tanx)/(1-tanx)|+c`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

int(sec^(2)x)/(1-tan^(2)x)dx

int(sec^2x)/(1+tan x)dx

int(sec^(2)x)/(9-tan^(2)x)dx

Evaluate: int(tanxsec^2x)/(1-tan^2x)dx

Evaluate: int(sec^(2)x)/(tan x+2)dx

Evaluate :int(sec^(2)x)/(3+tan x)dx

Evaluate: int(sec^(2)x)/(3+tan x)dx

Evaluate: int(sec^(2)x)/(3+tan x)dx

int(sec^(2)x)/(tan x)dx

int(sec^(2)x)/(tan x)dx