Home
Class 11
MATHS
If x=3sinalphacosbeta, y=3sinalphasinbet...

If `x=3sinalphacosbeta, y=3sinalphasinbeta` and z=`3cosalpha` then `(x-y)^2+(y-z)^2+(z-x)^2+(x+y+z)^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify that x^3 + y^3 + z^3- 3xyz=1/2 (x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]

2x+y-z=1 x-y+z=2 3x+y-2z=-1

Verify that x3+y3+z3-3xyz=1/2(x+y+z)[(x-y)2+(y-z)2+(z-x)2]

Verify that : x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2] Consider R.H.S

Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

Prove that : |{:(x-y-z ,2x, 2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|=(x+y+z)^(3)

Simplify (y-z)^2(z-y)+(z-x)^2(x-z)+(x-y)^2(y-x)+3(y-z)(z-x)(x-y)

Prove that |[x, y, z],[x^2, y^2, z^2], [x^3, y^3, z^3]|=xyz(x-y)(y-z)(z-x)