Home
Class 10
MATHS
" 16"tan A=ntan Band sin A=msin B," prov...

" 16"tan A=ntan Band sin A=msin B," prove that "cos^(2)A=((m^(2)-1))/((n^(2)-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A=n tan B and sin A=m sin B, prove that cos^(2)A=(m^(2)-1)/(n^(2)-1)

If tan A = n tan B and sin A = m sin B, prove that : cos^(2) A = (m^(2) - 1)/(n^(2) - 1)

If tan A = n tan B and sin A = m sin B , show that cos^(2)A= (m^(2)-1)/(n^(2)-1) .

If tan A =ntanB , sinA =msinB , prove that , cos^2A=(m^2-1)/(n^2-1) .

If "tan" alpha= n tan beta and sin alpha =m sin beta prove that : cos^(2)alpha=(m^(2)-1)/(n^(2)-1)

If tan alpha= n tan beta and sin alpha= m sin beta , prove that cos^2 alpha= (m^2-1)/(n^2-1) .

If (tan theta + sin theta) =m and (tan theta - sin theta) = n , prove that (m^(2)-n^(2))^(2)=16mn.

If cos A+sin B=m and sin A+cos B=n , prove that 2sin(A+B)=m^2+n^2-2.

Prove that (sin^(2)A)/(cos^(2)A)+1=(tan^(2)A)/(sin^(2)A)

If sin A = m sin B, "prove that" "tan" (A-B)/2 = (m-1)/(m+1) "tan" (A+B)/2