Home
Class 12
MATHS
Evaluate the following integrals : int(5...

Evaluate the following integrals : `int(5cos^3x+6sin^3x)/(2sin^2xcos^2x)dx`

Text Solution

AI Generated Solution

To evaluate the integral \[ I = \int \frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} \, dx, \] we can start by splitting the integral into two separate terms: ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

int(5cos^3x+7sin^3x)/(sin^2xcos^2x)dx

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Evaluate the following integrals: int(2+3cos x)/(sin^(2)x)dx

Evaluate the following integrals: int(cos^(2)x-sin^(2)x)/(sqrt(1+cos4x))dx

Evaluate the following integrals: int frac{sin^6x+cos^6x}{sin^2x cos^2x}dx

Evaluate the following integrals: int ( cos 2x+2sin^(2)x)/(cos^(2)x) dx

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx

Evaluate the following Integrals : int (cos x)/((1+sin x)(2+sin x))dx

Find int(sin^3x+cos^3x)/(sin^2xcos^2x)dx .