Home
Class 12
MATHS
Prove that tan^-1((cosx)/(1+sinx))=pi/4-...

Prove that `tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((cosx)/(1+sinx))=pi/4-x/2x in [-pi/2,pi/2]

Show that tan^-1(frac(cosx)(1-sinx))=pi/4+x/2

Prove that tan^(-1)((cosx)/(1+sin x)) =(pi)/(4)-(x)/(2), x in (-(pi)/(2), (pi)/(2)) .

Show that tan^-1((cosx)/(1 + sin x)) = pi/4 - x/2 , where x in (-pi/2 , pi/2)

Prove that tan^(-1)((cos x)/(1+sin x))=(pi)/(4)-(x)/(2),|x in(-(pi)/(2),(pi)/(2))

Prove that tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi .

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi .

tan^(-1)((cosx-sinx)/(cosx+sinx))=pi/4-x

Prove that tan^(-1)(sqrt((1-cosx)/(1+cosx)) )=x/2, x lt pi .