Home
Class 12
MATHS
prove that intx^2/((x^2+1)(x^2+4))dx=-1/...

prove that `intx^2/((x^2+1)(x^2+4))dx=-1/3tan^-1x+2/3tan^-1 (x/2)+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that int(x^(2))/((x^(2)+1)(x^(2)+4))dx=-(1)/(3)tan^(-1)x+(2)/(3)tan^(-1)((x)/(2))+

If int(1)/((x^2+1)(x^2+4))dx=a tan^(-1). x+b tan^(-1).(x)/(2)+c , then :

Prove that: ∫dx/(x^2 + a^2) = 1/a tan^(-1) (x/a) + C

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

int(1)/(1+3cos^(2)x)dx=(1)/(2)tan^(-1)((tan x)/(2))+c

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that tan(2tan^(-1)x)=2tan(tan^(-1)x+tan^(-1)x^(3))

Prove that tan^(-1)""(3a^(2)x-x^(3))/(a^(3)-3ax^(2))=3tan^(-1)""x/a .

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))