Home
Class 12
MATHS
If x,y,z gt 0 then prove that (x+y+z)(1/...

If `x,y,z gt 0` then prove that `(x+y+z)(1/x+1/y+1/z) geq 9`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If x,y,x gt 0 and x+y+z=1 then (xyz)/((1-x) (1-y) (1-z)) is necessarily.

If x,y,x gt 0 and x+y+z=1 then (xyz)/((1-x) (1-y) (1-z)) is necessarily.

If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x+ y + xyz = z .

If tan^-1 x + tan^-1y - tan^-1z = 0 , then prove that x + y + xyz = z.

if x+y+z=0,then Prove that (xyz)/((x+y)(y+z)(z+x))=-1 where(x!=-y,y!=-z,z!=-x)

If x > 0, y >0, z > 0 and x +y + z = 1 , prove that (1+x)(1+y)(1+z)ge 8(1-x) (1-y) (1-z)

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)