Home
Class 12
PHYSICS
Estimate the mass of the sun, assuming t...

Estimate the mass of the sun, assuming the orbit of Earth around the sun to be a circle. The distance between the sun and the Earth is `1.49 xx 10^(11) m`, and `G = 6.67 xx 10^(-11) Nm^(2) kg^(-2)`.

Text Solution

Verified by Experts

The correct Answer is:
`2.01xx10^(30)kg`
Promotional Banner

Similar Questions

Explore conceptually related problems

Estimate the mass of the sun, assuning the orbit of Earth round the sun to be a circule. The disatnce between the sun and the Earth is 1.49 xx 10^(11) m , and G = 6.67 xx 10^(-11) Nm^(2) kg^(-2) .

Estimate the mass of the sun, assuming the orbit of the earth round the sun to be a circle. The distance between the sun and earth is 1.49 xx 10^(11) m and G = 6.66 × 10^(-11) Nm^(2)//kg^(2) .

Calculate the mass of the sun , given that the sistance between the sum and the earth is 1.5xx 10^(-11) m and G = 6.66 xx 10 ^(-11) SI units and taken a year = 365 days .

Find the velocity of escape from the sun, if its mass is 1.89xx10^(30) kg and its distance from the earth is 1.59xx10^(8) km. Take G =6.67xx10^(-11) Nm^(2) kg^(-2)

Find the magnitude of the gravitational force between the Sun and the earth. (Mass of the Sun =2xx10^(30) kg, mass of the earth =6xx10^(24)kg and the distance between the centres of the Sun and the earth =1.5xx10^(11)m , (G=6.67xx10^(-11)N.m^(2)//kg^(2))

Calculat the binding energy of the - sum system . Mass of the earth =6xx 10 ^(24) kg , mass of the sun = 2 xx 10^(30) kg, distance between the earth and the sun = 1.5 xx 10^(11) and gravitational constant = 6.6 xx 10 ^(-11) N m^(2) kg^(2)

How far from Earth must a body be along a line joining the sun to the earth so that resultage gravitational pull on the body due to Earth and sun is zero ? Distance between sun and the Earth is 1.5 xx 10^(8) km . Mass of sun = 3.25 xx 10^(5) times mass of Earth.

Calculate (i) kinetic energy (ii) potential energy and (iii) total energy of a satellite of mass 200 kg orbiting around the earth in an orbit of height 100 km from the surface of earth. Given, mass of earth = 10^(25) kg ,radius of earth = 6.4 xx 10^(6) m, G = 6.67 xx 10^(-11) Nm^(2) kg^(-2) .

The period of moon around the earth is 27.3 days and radius of the orbit is 3.9 xx 10^(5) km . G=6.67 xx 10^(-11) Nm^(-2)kg^(-2) , find the mass of the earth.

Assuming that earth's orbit around the sun is a circle of radius R=1.496xx10^(11)m compute the mass of the sun. (G=6.668xx10^(-11)Nm^(2)kg^(-2))