Home
Class 12
CHEMISTRY
The equilibrium constant (K) for the rea...

The equilibrium constant (K) for the reaction
`Cu(s)+2Ag^(+) (aq) rarr Cu^(2+) (aq)+2Ag(s)`, will be
[Given, `E_(cell)^(@)=0.46 V`]

A

`K_(c)=` antilog 15.6

B

`K_(c)=` antilog 2.5

C

`K_(c)=` antilog 1.5

D

`K_(c)=` antilog 12.2

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant (K) for the reaction \[ \text{Cu(s)} + 2\text{Ag}^+ (aq) \rightleftharpoons \text{Cu}^{2+} (aq) + 2\text{Ag(s)} \] given that the standard cell potential \( E^\circ_{cell} = 0.46 \, \text{V} \), we can use the relationship between the Gibbs free energy change and the equilibrium constant. ### Step-by-Step Solution: 1. **Identify the Reaction and Variables:** The reaction involves copper and silver ions. The number of electrons transferred in the reaction (n) is 2, as each silver ion gains one electron. 2. **Use the Gibbs Free Energy Equation:** The relationship between Gibbs free energy change (\( \Delta G^\circ \)), the cell potential (\( E^\circ_{cell} \)), and the equilibrium constant (K) is given by: \[ \Delta G^\circ = -nFE^\circ_{cell} \] where: - \( n = 2 \) (number of electrons transferred) - \( F = 96500 \, \text{C/mol} \) (Faraday's constant) - \( E^\circ_{cell} = 0.46 \, \text{V} \) 3. **Calculate \( \Delta G^\circ \):** Substitute the values into the equation: \[ \Delta G^\circ = -2 \times 96500 \times 0.46 \] Calculate \( \Delta G^\circ \): \[ \Delta G^\circ = -2 \times 96500 \times 0.46 = -88940 \, \text{J/mol} \] 4. **Use the Relationship Between \( \Delta G^\circ \) and K:** The relationship between \( \Delta G^\circ \) and the equilibrium constant K is given by: \[ \Delta G^\circ = -2.303RT \log K \] where: - \( R = 8.314 \, \text{J/(mol K)} \) - \( T = 298 \, \text{K} \) (assuming room temperature) 5. **Rearranging the Equation:** We can rearrange this equation to solve for \( \log K \): \[ \log K = \frac{-\Delta G^\circ}{2.303RT} \] 6. **Substituting Values:** Substitute \( \Delta G^\circ \), \( R \), and \( T \) into the equation: \[ \log K = \frac{88940}{2.303 \times 8.314 \times 298} \] 7. **Calculate \( \log K \):** Calculate the denominator: \[ 2.303 \times 8.314 \times 298 \approx 5730.58 \] Now calculate \( \log K \): \[ \log K \approx \frac{88940}{5730.58} \approx 15.5 \] 8. **Find K:** To find K, we take the antilog: \[ K = 10^{15.5} \approx 3.16 \times 10^{15} \] ### Final Answer: The equilibrium constant \( K \) for the reaction is approximately \( 3.16 \times 10^{15} \).

To find the equilibrium constant (K) for the reaction \[ \text{Cu(s)} + 2\text{Ag}^+ (aq) \rightleftharpoons \text{Cu}^{2+} (aq) + 2\text{Ag(s)} \] given that the standard cell potential \( E^\circ_{cell} = 0.46 \, \text{V} \), we can use the relationship between the Gibbs free energy change and the equilibrium constant. ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos
  • D AND F BLOCK ELEMENTS

    BITSAT GUIDE|Exercise BITSAT Archives|10 Videos
  • GENERAL ORGANIC CHEMISTRY

    BITSAT GUIDE|Exercise BITSAT|13 Videos

Similar Questions

Explore conceptually related problems

The equilbrium constant for the reaction : Cu + 2 Ag^(+) (aq) rarr Cu(2+) (aq) +2 Ag, E^@ = 0. 46 V at 299 K is

Calculate the equilibrium costant log (K_(c)) for the reaction Zn(s)+Cu^(2+)(aq)rarrZn^(2+)(aq)+Cu(s) [Given E_(cell)^(2)=1.1 V ]

The equilibrium constant (K) for the reaction Fe^(2+)+(aq)Ag^(+)(aq)toFe^(3+)(aq)+Ag(s) will be Given E^(@)(Fe^(3+)//Fe^(2+))=0.77V, E^(@)(Ag^(+)//Ag)=0.80V

Calculate equilibrium constant for the reaction at 25^(@)C Cu(s)+2Ag^(+)(aq) hArr Cu^(2+)(aq)+2Ag(s) E^(@) value of the cell is 0.46 " V " .

Given the equilibrium constant : K_(c) of the reaction : Cu(s) + 2Ag^(+)(aq) rightarrow Cu^(2+) (Aq) + 2Ag(s) is 10xx10^(15) , calculate the E_(cell)^(@) of this reaction at 298K . ([2.303 (RT)/(Ft) at 298K = 0.059V])

Given the equilibrium constant : K_(C) of the reaction: Cu(s) + 2Ag^(+)(aq) to Cu^(2+) + 2Ag(s) is 10xx 10^(15) , calculate the E_("cell")^(ө) of this reaction at 298 K [2.303(RT)/(F) at 298 K = 0.059V]

Select the correct statement(s) for the given relation Cu(s)+2Ag^(+)(aq)rarrCu^(2+)(aq)+2Ag(s)

The equilibrium constant for the cell Cu(s)+2Ag^+(aq)rarrCu^(2+)(aq)+2Ag(s) ,at 298K is [Given, E_((Ag)^+/(Ag))^o=0.8V and E_((Cu)^(2+)/(Cu))^o=0.34V ]

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V