Home
Class 12
CHEMISTRY
Given, standard electrode potentials F...

Given, standard electrode potentials
`Fe^(2+) +2e^(-) rarr Fe, E^(@)=-0.440 V`
`Fe^(3+)+3e^(-) rarr Fe, E^(@)=- 0.036 V`
The standarde potential `(E^(@))` for
`Fe^(2+)+e^(-) rarr Fe^(2+)`, is

A

`+0.772 V`

B

`-0.772 V`

C

`+0.417 V`

D

`-0.417 V`

Text Solution

AI Generated Solution

The correct Answer is:
To find the standard electrode potential \( E^\circ \) for the reaction \[ \text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \] we will use the given standard electrode potentials for the half-reactions: 1. \(\text{Fe}^{2+} + 2e^- \rightarrow \text{Fe}, \quad E^\circ = -0.440 \, \text{V}\) 2. \(\text{Fe}^{3+} + 3e^- \rightarrow \text{Fe}, \quad E^\circ = -0.036 \, \text{V}\) ### Step 1: Write the two half-reactions We have the following half-reactions: 1. \(\text{Fe}^{2+} + 2e^- \rightarrow \text{Fe} \quad (E^\circ_1 = -0.440 \, \text{V})\) 2. \(\text{Fe}^{3+} + 3e^- \rightarrow \text{Fe} \quad (E^\circ_2 = -0.036 \, \text{V})\) ### Step 2: Calculate the Gibbs free energy changes The Gibbs free energy change for a reaction can be calculated using the formula: \[ \Delta G^\circ = -nFE^\circ \] where \( n \) is the number of moles of electrons transferred, \( F \) is Faraday's constant, and \( E^\circ \) is the standard electrode potential. For the first reaction (1 electron transfer): \[ \Delta G_1^\circ = -2F(-0.440) = 0.880F \] For the second reaction (3 electrons transfer): \[ \Delta G_2^\circ = -3F(-0.036) = 0.108F \] ### Step 3: Determine the Gibbs free energy change for the desired reaction To find the Gibbs free energy change for the reaction \[ \text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \] we can use the relation: \[ \Delta G_3^\circ = \Delta G_2^\circ - \Delta G_1^\circ \] Substituting the values we calculated: \[ \Delta G_3^\circ = 0.108F - 0.880F = -0.772F \] ### Step 4: Calculate the standard electrode potential for the desired reaction Now we can find \( E^\circ_3 \) using: \[ \Delta G_3^\circ = -F E^\circ_3 \] Thus, \[ -0.772F = -FE^\circ_3 \] Cancelling \( F \) from both sides gives: \[ E^\circ_3 = 0.772 \, \text{V} \] ### Final Answer The standard electrode potential \( E^\circ \) for the reaction \[ \text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \] is \[ E^\circ = 0.772 \, \text{V} \]

To find the standard electrode potential \( E^\circ \) for the reaction \[ \text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \] we will use the given standard electrode potentials for the half-reactions: ...
Promotional Banner

Topper's Solved these Questions

  • ELECTROCHEMISTRY

    BITSAT GUIDE|Exercise BITSAT Archives|13 Videos
  • D AND F BLOCK ELEMENTS

    BITSAT GUIDE|Exercise BITSAT Archives|10 Videos
  • GENERAL ORGANIC CHEMISTRY

    BITSAT GUIDE|Exercise BITSAT|13 Videos

Similar Questions

Explore conceptually related problems

Given standard electode potenitals Fe^(2+) + 2e^(-) rarr Fe, E^@ =- 0. 44 V ………………(1) Fe^(3+) + 2e^(-) rarr Fe, E^@ =- 0. 036 V ………….(2) The standard electrode pptential E^@ for Fe^(2+) + e rarr Fe^(2+) is.

Given, standard electrode potentials, {:(Fe^(3+)+3e^(-) rarr Fe,,,E^(@) = -0.036 " volt"),(Fe^(2+)+2e^(-)rarr Fe,,,E^(@) = - 0.440 " volt"):} The standard electrode potential E^(@) for Fe^(3+) + e^(-) rarr Fe^(2+) is :

Given standard electrode potentials: Fe^(3+)+3e^(-)toFe,E^(@)=-0.036"volt Fe^(2+)+2e^(-)toFe,E^(@)=-0.440"volt" the standard electron potential E^(@) for Fe^(3+)+e^(-)toFe^(2+)

The standard reduction for the following reactions are : Fe^(3+) + 3e^(-) rarr Fe with E^(@) = - 0.036 V Fe^(2+) + 2e^(-) rarr Fe with E^(@) = - 0.44 V What would be the standard electrode potential for the reaction Fe^(3+) + e^(-) rarr Fe^(2+) ?

Given standard E^(c-): Fe^(3+)+3e^(-)rarrFe," "E^(c-)=-0.036 Fe^(2+)+2e^(-)rarr Fe," "E^(c-)=-0.440V The E^(c-) of Fe^(3+)+e^(-) rarr Fe^(2+) is

Standard electrode potentials are Fe^(2+)//Fe, E^(@) = -0.44 V Fe^(3+)//Fe^(2+), E^(@) = -0.77 V If Fe^(3+), Fe^(2+) , and Fe block are kept together, then

Given electrode potentials asre Fe^(3+)+e^(-) rarr Fe^(2+)," "E^(c-)=0.771V I_(2)+2e^(-) rarr 2I^(c-)," "E^(c-)=0.536V E^(c-)._(cell) for the cell reaction, Fe^(3+)+2I^(c-) rarr Fe^(2+)+I_(2) is