Home
Class 12
MATHS
Evaluate the following integrals : int(c...

Evaluate the following integrals : `int(cos^2x-sin^2x)/(sqrt(1+cos4x))dx`

Text Solution

Verified by Experts

We know that `cos 2x=2cos^2 x-1=cos 2x-sin^2 x`
So, numerator becomes `cos2x – sin2x = cos2x`
Denominator becomes, `4x = 2 × 2x ⇒ 1 + cos4x = 1 + cos(2 xx 2x) ⇒ 1 + cos4x = 2cos^(2)2x`
`I=int(frac{cos 2x}{sqrt(2 cos^2 2x)})`
`=int(frac{cos 2x}{sqrt(2 )cos 2 x})`
`=int (frac{1}{sqrt 2})dx`
`=int(frac{1}{sqrt 2})dx`
`=frac{x}{sqrt 2}+C`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int cos^(-1)(sin x)dx

Evaluate the following integrals : int(1)/(1+cos2x)dx

Evaluate the following integrals int (cos^(2)x sin x)/(sin x - cos x)dx

Evaluate the following integral: int_(0)^( pi/2)(sin x)/(sqrt(1+cos x))dx

Evaluate the following integrals: int ( cos 2x+2sin^(2)x)/(cos^(2)x) dx

Evaluate the following integrals: int(cos x)/(1-cos x)dx

Evaluate the following integrals : int(1-cos2x)/(1+cos2x)dx

Evaluate the following integrals : int(sin^(2)x)/(1+cos x)dx

Evaluate the following integrals: int (1-cos x)/(sin x) dx

Evaluate the following Integral: int(cos^(2)x)/(1+sin x)dx