Home
Class 12
MATHS
If lim(x->a) f(x) = lim(x->a) [f(x)] ([...

If `lim_(x->a) f(x) = lim_(x->a) [f(x)]` ([.] denotes the greatest integer function) and `f(x)` is non-constantcontinuous function, then :

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xrarra) f(x)=lim_(xrarra) [f(x)] ([.] denotes the greates integer function) and f(x) is non-constant continuous function, then

If lim_(xrarra) f(x)=lim_(xrarra) [f(x)] ([.] denotes the greates integer function) and f(x) is non-constant continuous function, then

If lim_(x rarr a)f(x)=lim_(x rarr a)[f(x)]([.] denotes the greatest integer function) and f(x) is non- constantcontinuous function,then:

If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes the greates integer function) and f(x) is non-constant continuous function, then

If underset(xrarra)(lim)f(x)=underset(xrarra)(lim)[f(x)] ([.] denotes the greates integer function) and f(x) is non-constant continuous function, then

lim_(xrarr1([x]+[x]) , (where [.] denotes the greatest integer function )

f(x)=log(x-[x]), which [,] denotes the greatest integer function.

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(x rarr1)(x sin(x-[x]))/(x-1) ,where [.]denotes the greatest integer function, is