Home
Class 10
MATHS
(1)/(2)(cos t+sqrt(3)sin t)=cos((pi)/(3)...

(1)/(2)(cos t+sqrt(3)sin t)=cos((pi)/(3)-t)

Promotional Banner

Similar Questions

Explore conceptually related problems

int sqrt(2+ sin 3t) cos 3t dt

If x=cos t and y=sin t, prove that (dy)/(dx)=(1)/(sqrt(3)) at t=(2 pi)/(3)

The expression (1)/(sqrt(2)){(sin tan^(-1)cos tan^(-1)t)/(cos tan^(-1)sin cot^(-1)sqrt(2)t)}*{sqrt((1+2t^(2))/(2+t^(2)))}

If x=a sin2t(1+cos2t) and y=b cos2t(1-cos2t), find the values of (dy)/(dx) at t=(pi)/(4) and t=(pi)/(3)

If x = sin t and y = tan t , then (dy)/(dx) is equal to a) cos ^(2) t b) (1)/( cos ^(3) t ) c) (1)/( cos ^(2) t ) d) sin ^(2) t

If x=(sin^(3)t)/(sqrt(cos 2t)) and y=(cos^(3)t)/( sqrt(cos 2t)) , show that (dy)/(dx)=0 at t=(pi)/(6) .

If x=(sin^(3)t)/(sqrt(cos2t)) and y=(cos^(3)t)/(sqrt(cos2t)) , then find (dy)/(dx) .

If x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t)) show that (dy)/(dx)=0att=(pi)/(6)