Home
Class 11
MATHS
(3x^(3)-2x^(2)-1)/(x^(4)+x^(2)+1)=...

(3x^(3)-2x^(2)-1)/(x^(4)+x^(2)+1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(4)+3x^(3)+x^(2)-1)/(x^(3)+x^(2)-x-1)dx

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

lim_(x rarr1)[((4)/(x^(2)-x^(-1))-(1-3x+x^(2))/(1-x^(3)))^(-1)+3(x^(4)-1)/(x^(3)-x^(-1))]

Simplify: (x^(3)-2x^(2)+3x-4)(x-1)-(2x-3)(x^(2)-x+1)

If x+(1)/(x)=3, calcuate x^(2)+(1)/(x^(2)),x^(3)+(1)/(x^(3)) and x^(4)+(1)/(x^(4))

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

Check whether the following are quadratic equations : (1) (x-2)^(2)+1=2x-3 (2) x(x+1)=8=(x+2)(x-2) (3) x(2x+3)=x^(2)+1 (4) (x+2)^(3) = x^(3)-4