Home
Class 11
MATHS
e^(y)-(a+b tan x)/(a-b tan x)=0...

e^(y)-(a+b tan x)/(a-b tan x)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((a+b tan x)/(b-a tan x))

tan^(-1) [(a+b tan x)/(b-a tan x)]

tan^(-1)( (a+b tan c)/ (b-a tan x) )

int(dx)/(a+b tan x)dxa+b tan x

Let g(x) = {{:((x^2 + x "tan" x - x "tan" 2x)/(ax + tan x - tan 3x"),x != 0),(0,x = 0):} . If g'(0) exists and is equal to nonzero value b, then 52 b/a is equal to ………

IF ( sin ( x+y) )/( sin (x-y) ) = (a+b)/( a-b) , then ( tan x)/( tan y) =

(tan(x+y)-tan x)/(1+tan(x+y)tan x)=tan y

(tan(x+y)-tan x)/(1+tan(x+y)tan x)=tan y

If (sin (x+y))/( sin(x-y))=(a+b)/(a-b) , then (tan x)/( tan y) is equal to