Home
Class 9
MATHS
root(5)(243x^(10)y^(5)z^(10))...

root(5)(243x^(10)y^(5)z^(10))

Promotional Banner

Similar Questions

Explore conceptually related problems

Assuming that x ,\ y ,\ z are positive real numbers, simplify each of the following: (sqrt(x))^(-2/3)\ sqrt(y^4)-:\ sqrt(x y^(-1/2)) (ii) root(5)(243\ x^(10)y^5z^(10))

Assuming that x,y,z are positive real numbers,simplify each of the following: (sqrt(x))^(-(2)/(3))sqrt(y^(4))-:sqrt(xy^(-(1)/(2)))( ii) 243x^(10)y^(5)z^(10)5

x^(2)x2y^(3)x5x^(3)y^(2) is equal to: 10x^(2)y^(5) (b) 10x^(5)y^(2)10x^(5)y^(5)(d)x^(5)y^(5)

(root5root5(a^(5)))^(10) is equal to

If xyz ne 0 and 30x^(-5)y^(12)z^(-8)=10 x^(-6)y^(5)z^(4) , then what is the value of x in terms of y and z ?

If the positive numbers x,y&z satisfy xyz=1000,log_(10)x log_(10)y+log_(10)xy log_(10)z=1 and log_(x)10+log_(y)10+log_(z)10=(1)/(3) then the value of root(3)((log_(10)x)^(3)+(log_(10)y)^(3)+(log_(10)z)^(3)) is

Show that: (x^(2)+y^(2))^(5)=(x^(5)-10x^(3)y^(2)+5xy^(4))^(2)+(5x^(4)-10x^(2)y^(3)+y^(5))^(2)

If x, y and z are integers, is x even? (1) 10^(x)=(4^(y))(5^(z)) (2) 3^(x+5)=27^(y+1)

For the system of equation "log"_(10) (x^(3)-x^(2)) = "log"_(5)y^(2) "log"_(10)(y^(3)-y^(2)) = "log"_(5) z^(2) "log"_(10)(z^(3)-z^(2)) = "log"_(5)x^(2) Which of the following is/are true?