Home
Class 12
MATHS
If A is a non singular matrix then |A^(-...

If `A` is a non singular matrix then `|A^(-1)|=|A|^(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If is a non-singular matrix, then det (A^(1))=

If A is a non-singular matrix, then A (adj.A)=

If A is a non singular matrix; then prove that |A^(-1)|=|A|^(-1)

If A is a non-singular matrix then prove that A^(-1) = (adjA)/(|A|) .

If A is a 3xx3 non-singular matrix,then |A^(-1)adj(A)| is

If A is a non singular matrix such that A^(-1)=[[7,-2],[-3,1]] then (A^(T))^(-1) is :

If A is a non-singular matrix such that A^(-1)=[(5,3),(-2,-1)], "then" (A^(T))^(-1) =