Home
Class 9
MATHS
" (i) "(x+3y)(x^(2)-3xy+9y^(2))...

" (i) "(x+3y)(x^(2)-3xy+9y^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the products: (x+3y)(x^(2)-3xy+9y^(2))

Simplify : 7x^(3)+8y^(3)-(4x+3y)(16x^(2)-12xy+9y^(2))

The factors of x^(3)-x^(2)y-xy^(2)+y^(3) are (a (x+y)(x^(2)-xy+y^(2))(b)(x+y)(x^(2)+xy+y^(2))(c)(x+y)^(2)(x-y)(d)(x-y)^(2)(x+y)

Verify : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2)) (ii) x^(3)-y^(3)=(x-y)(x^(2)+xy+y^(2))

Verify : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2)) " " (ii) x^(3)-y^(3)=(x-y)(x^(2)+xy+y^(2))

Veriffy : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2))x^(3)-y^(3)=(x-y)(x^(2)+xy+y^(2))

Simplify: 2x^(2)+3xy -3y^(2)+x^(2)-xy+y^(2)

Factorise 25x^(2) - 30xy + 9y^(2) . The following steps are involved in solving the above problem . Arrange them in sequential order . (A) (5x - 3y)^(2) " " [ because a^(2) - 2b + b^(2) = (a-b)^(2)] (B) (5x)^(2) - 30xy + (3y)^(2) = (5x)^(2) - 2(5x)(3y) + (3y)^(2) (C) (5x - 3y) (5x - 3y)