Home
Class 11
MATHS
[y=e^(ax)sin bx],[" Prove That: "y(2)-2a...

[y=e^(ax)sin bx],[" Prove That: "y_(2)-2ay_(1)+(a^(2)+b^(2))y=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(ax)sin bx, then prove that y_(2)-2ay_(1)+(a^(2)+b^(2))y=0

If y= e^(ax) sin bx then show that, y_(2)- 2ay_(1) + (a^(2) + b^(2))y= 0

If y= e^(ax) sin(bx), show that y2 - 2ay1 + ( a^2 + b^2 ) y = 0

If y=e^(ax)sinbx show that y_2-2ay_1+(a^2+b^2)y=0 .

IF y=e^(ax)sin bx , then prove that, (d^2y)/(dx^2)-2ady/dx+(a^2+b^2)y=0

If y = e^[ax] sin bx , prove that d^2y/dx^2 - 2a dy/dx +(a^2 + b^2 ) y = 0 .

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y=e^(2x)(ax+b), show that y_(2)-4y_(1)+4y=0

y=e^(ax)sin bx : Find y_1 .

If y=e^(ax) sin be then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .