Home
Class 12
MATHS
If a,b,c are distinct, show that [[1,1,...

If a,b,c are distinct, show that `[[1,1,1],[a,b,c],[a^3,b^3,c^3]] = (b-c) * (c-a)*(a-b)(a+b+c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,are distinct,show that [[1,1,1a,b,ca^(3),b^(3),c^(3)]]=(b-c)*(c-a)*(a-b)(a+b+c)

Prove the following: [[1,1,1],[a,b,c],[a^3,b^3,c^3]] =(b-c)(c-a)(a-b)(a+b+c)

By using properties of determinants, show that : |[1,1,1],[a,b,c],[a^3,b^3,c^3]| = (a-b)(b-c)(c-a)(a+b+c)

1,1,1a,b,ca^(3),b^(3),c^(3)]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |(1,1,1),(a,b,c),(a^3,b^3,c^3)| = (a - b)(b-c)(c-a)(a+b+c) .

|{:(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3):}|=(b-c)(c-a)(a-b)(bc+ca+ab)

Prove that |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|=(a-b)(b-c)(c-a)(a+b+c)

|(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|=

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)