Home
Class 12
MATHS
If omega is the cube root of unity, prov...

If `omega` is the cube root of unity, prove that `|[1,omega^6,omega^8],[omega^6,omega^3,omega^7],[omega^8,omega^7,1]|=3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is the cube root of unity then find the value of |[1,omega^(6),omega^(8)],[omega^(6),omega^(3),omega^(7)],[omega^(8),omega^(7),1]|

If omega is a cube root of unity, prove that (1+omega-omega^2)^3-(1-omega+omega^2)^3=0

If omega is the cube root of unity, prove that (1-omega+omega^2)^6 + (1+omega-omega^2)^6 = 128

If omega be an imaginary cube root of unity, prove that omega^4+omega^8+1/omega+1/omega^2=-2

If omega be an imaginary cube root of unity, prove that (1-omega+omega^2)(1+omega-omega^2)=4

If omega is a cube root of unity |(1, omega, omega^(2)),(omega, omega^(2), 1),(omega^(2), omega, 1)| =

If omega is complex cube root of unity (1-omega+ omega^2) (1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

If omega is a complex cube root of unity, then (1-omega+(omega)^2)^3 =

If omega is a cube root of unity (1-2 omega+omega^(2))^(6)=

If omega is a cube roots of unity then (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(8))=