Home
Class 12
MATHS
If f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x,...

If `f(x)=|[a,-1 ,0],[ax,a,-1],[a x^2,a x, a]|,` using properties of determinants, find the value of `f(2x)-f(x)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of determinants find the value of f(2x) − f(x).

If f(x)=|[a,-1, 0],[a x, a,-1],[a x^2,a x, a]|,using properties of determinants find the value of f(2x) − f(x).

If f(x)=|[a-1, 0,a] , [x,a-1,a], [x^2a, x, a]| , using properties of determinants, find the value of f(2x)-f(x) .

If f(x) = {:|(a,-1,0),(ax,a,-1),(ax^2,ax,a)| , using properties of determinants, find the value of f(2x)-f(x)

If f(x)=|{:(a,-1,0),(ax,a,-1),(ax^2,ax,a):}| then using properties of determinants, find the value of f(2x)-f(x)

If f(x)=|a-10axa-1ax^(2)axa|, using properties of determinants,find the value of f(2x)-f(x)

If f(x)=|(a,-1,0),(ax,a,-1),(ax^(2),ax,a)| then f(3x)-f(2x)=

If f(x) = |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(x-1),x(x-1)(x-2),x(x+1)(x-1))| , using properties of determinant, find f(2x) - f(x).

If f(x)=|(a,-1,0),(ax,a,-1),(ax^2,ax,a)|, then f(2x)-f(x) equals