Home
Class 11
MATHS
[" If "S(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3...

[" If "S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(3))/(5!)+],[" n terms then "],[[" (A) "S_(15)=1-(2^(16))/(17!)],[" (B) "S_(10)=1-(2^(10))/(11!)]],[" (C) "S_(2015)=1-(2^(2016))/((2017)!)],[" (D) "S_(2014)=1-(2^(2015))/((2015)!)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(3))/(5!)+... upto n terms then the sum infinite terms is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

S_(n)=(1.2)/(3)+(2.3)/(3^(2))+(3.4)/(3^(3))......oo, then 4S is

Consider S_(n)=(1)/(3^(2)+1)+(1)/(4^(2)+2)+(1)/(5^(2)+3)+(1)/(6^(2)+4)+, upto n terms then

If S=sum_(n=2)^(oo)(3n^(2)+1)/((n^(2)-1)^(3)) then (9)/(4S) is