Home
Class 11
MATHS
prove that C0 Cn+ C1 C(n-1) + C2 C(n-2)+...

prove that `C_0 C_n+ C_1 C_(n-1) + C_2 C_(n-2)+..........+ C_n C_0= 2nC_n`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0C_n+C_1C_(n-1)+C_2C_(n-2)+.....+ C_nC_0= ((2n!))/(n!)^2 .

Prove that C_0C_2+C_1C_3+…+C_(n-2)C_n=^(2n)C_(n-2)

Prove that C _(0) +2 . C _(1) + 2 ^(2) . C _(2) + .......+ 2 ^(n) . C _(n) = 3 ^(n).

Prove that (C_0 + C_1) (C_1 + C_2) …..(C_(n-1) + C_n) = ((n+1)^n)/(n!) (C_1.C_2.C_3……C_n)

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

Prove that (C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n) = (C_0C_1C_2.....C_(n-1)(n+1)^n)/(n!)

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot