Home
Class 12
MATHS
Given f(x)=1/(1-x),g(x)=f{f(x)} and h(x)...

Given `f(x)=1/(1-x),g(x)=f{f(x)}` and `h(x)=f{f{f(x)}}` then the value of `f(x)g(x)h(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

If f(x)=(1)/((1-x)),g(x)=f{f(x)}andh(x)=f[f{f(x)}] . Then the value of f(x).g(x).h(x) is

If f(x)=(x-1)/(x+1), g(x)=1/x and h(x)=-x . Then the value of g(h(f(0))) is:

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

If f(x)=(1)/((1-x)) and g(x)=f[f{f(x))} then g(x) is discontinuous at

f(x)= x, g(x)= (1)/(x) and h(x)= f(x) g(x). If h(x) = 1 then…….