Home
Class 12
MATHS
Evaluate : inta/(a^xb^x)dx...

Evaluate : `inta/(a^xb^x)dx`

Text Solution

Verified by Experts

`1/(a^xb^x)=1/(ab)^x`
`=(ab)^(-x)`
`=e^(loge(ab)*(-x))`
`int1/(a^xb^x)dx=inte^(loge(ab)*(-x)`
`=1/(-loge(ab))e^(loge(ab)^(-x)`
`=1/log_e(ab)*(ab)^(-x)+c`
`=(a^(-x)*b^(-x))/(log_e(ab))+c`.
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

inta^(a^(x)).a^(x)dx=

Evaluate: int_a^b e^-x dx

Evaluate inta^(3x+3)\ dx, agt0

Evaluate: int_a^b sinx dx as the limit of a sum.

Evaluate : int[x/a+a/x+x^(a)+a^(x)]dx

Evaluate: intsinsqrt (x)dx

Evaluate intcossqrt (x) dx

What is the value of inta^(x)e^(x)dx ?

Evaluate: intsqrt((a-x)/(a+x))\ dx