Home
Class 12
MATHS
Evaluate: inttanxsec^2xsqrt(1-tan^2x)dx...

Evaluate: `inttanxsec^2xsqrt(1-tan^2x)dx`

Text Solution

Verified by Experts

I=`inttanxsec^2xsqrt(1-tan^2x)dx`
Let `1−tan^2x=t`
=`−2tanxsec^2xdx=dt`
I=`inttanxsec^2xsqrt(1-tan^2x)dx`
I=`1/2int t^(1/2)`
=`1/2.(2/3)t^(3/2)+c`
=`1/2.(2/3)(1−tan^2x)^(3/2)+c`
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

inttanxsec^2xdx

Evaluate: intsec^2x/sqrt (1-tan^2x)dx

Evaluate: int(tanxsec^2x)/(1-tan^2x)dx

Evaluate: int(tan^2xsec^2x)/(1+tan^6x)dx

Evaluate: int(sec^(2)x)/(1-tan^(2)x)dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

Evaluate: inttan(pi/4-x)/(cos^2xsqrt(tan^3x+tan^2x+tanx))dx

int(1+tan^2x)/(1-tan^2x)dx=

Evaluate: int(x^2+1)/(xsqrt(x^2+1))dx

Evaluate: int tan^(-1)((2x)/(1-x^(2)))dx