Home
Class 12
MATHS
lim(nto oo)1/(n)^(1/n)is equal to...

`lim_(nto oo)1/(n)^(1/n)`is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

If x_1=3 and x_ +1= sqrt(2+x_n), n ge 1 , then lim_(nto oo) x_n is equal to

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

l_(n)=int_(0)^(pi//4)tan^(n)xdx , then lim_(nto oo)n[l_(n)+l_(n-2)] equals

The value of lim_(n to oo) [(n!)/(n^(n))]^((1)/(n)) is equal to -

lim_(n rarr oo)3^(1/n) equals

The value of lim_(nto oo)(1/(sqrt(n^(2)))+1/(sqrt(n^(2)+1))+…..+1/(sqrt(n^(2)+2n))) is

underset (nto oo)("limit") {(1+1/n)(1+2/n)...(1+n/n)}^(1//n) is equal to :