Home
Class 12
MATHS
Let f(x)={0 for x=0 x^2 sin (pi/x) for ...

Let `f(x)={0 ` for `x=0 x^2 sin (pi/x)` for `-1 < x < 1(x != 0),` then : `x |x|` for `x > 1` or `x <-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={0 for x=0x^(2)sin((pi)/(x)) for -1 1 or x<-1

Let f(x){(0,"for" x=0),(x^(2) "sin"(pi)/(x),"for "-1 lt xlt1"," (x ne 0) " then"__),(x|x|, "for" x ge 1 or le -1):}

Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):} . Then , f(x) is

Let f(x)={{:( 0,x=0),(x^(2) sin pi//2x,|x| lt 1),(x|x|, |x| ge 1):} . Then , f(x) is

Let f(x) = {(x "sin" (pi)/(x)",",0 lt x le 1),(0,x =0):} . Then f'(x) = 0 for

Let f:R rarr R be defined by f(x)={x+2x^(2)sin((1)/(x)) for x!=0,0 for x=0 then

Let f(x) = [{:( sin (pi)/(2) x "," , 0 le x le 1) , (3 - 2x "," , x ge 1):} then

Let F (x) = [{:(cos x , -sin x , 0),(sin x , cos x , 0),(0 , 0, 1):}] , then

Let f(x) ={{:(sqrt(x)(1+x sin (1//x)), xgt0),( - sqrt((-x))(1+ sin (1//x)), x lt 0),( 0, x=0):} Discuss differentiability at x=0.