Home
Class 12
MATHS
If f^(prime)(x)=asinx+bcosx and f^(prime...

If `f^(prime)(x)=asinx+bcosx` and `f^(prime)(0)=4,f(0)=3,f(pi/2)=5f(x)dot`

Text Solution

Verified by Experts

`f^{prime}(x)=a sin x+b cos x`
` f^{prime}(0)=a sin 0+b cos 0=0+b=b=4` (given)
therefore` b=4`
` ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=a sin x+b cos x and f'(0)=4,f(0)=3,f((pi)/(2))=5, find f(x)

A function f: R->R satisfies sinxcosy(f(2x+2y)-f(2x-2y)=cosxsiny(f(2x+2y)+f(2x-2y))dot If f^(prime)(0)=1/2,t h e n (a)f^(prime)(x)=f(x)=0 (b)4f^(x)+f(x)=0 (c)f^(x)+f(x)=0 (d)4f^(x)-f(x)=0

If f(x)<0,\ x in (a , b) then at the point C(c ,\ f(c)) on y=f(x) for which F(c) is a maximum, f^(prime)(c) is given by a. f^(prime)(c)=(f(b)-f(a))/(b-1) b. \ f^(prime)(c)=(f(b)-f(a))/(a-b) c. f^(prime)(c)=(2(f(b)-f(a)))/(b-a) d. f^(prime)(c)=0

Let y=f(x) be a parabola, having its axis parallel to the y-axis, which is touched by the line y=x at x=1. Then, (a) 2f(0)=1-f^(prime)(0) (b) f(0)+f^(prime)(0)+f^(0)=1 (c) f^(prime)(1)=1 (d) f^(prime)(0)=f^(prime)(1)

Suppose that f(x) is differentiable invertible function f^(prime)(x)!=0a n dh^(prime)(x)=f(x)dot Given that f(1)=f^(prime)(1)=1,h(1)=0 and g(x) is inverse of f(x) . Let G(x)=x^2g(x)-x h(g(x))AAx in Rdot Which of the following is/are correct? G^(prime)(1)=2 b. G^(prime)(1)=3 c. G^(1)=2 d. G^(1)=3

If f(x)=|x-a|varphi(x), where varphi(x) is continuous function, then (a) f^(prime)(a^+)=varphi(a) (b) f^(prime)(a^-)=-varphi(a) (c) f^(prime)(a^+)=f^(prime)(a^-) (d) none of these

If f((x+2y)/3)=(f(x)+2f(y))/3\ AA\ x ,\ y in R and f^(prime)(0)=1 , f(0)=2 , then find f(x) .

If f is a continuous function on [0,1], differentiable in (0, 1) such that f(1)=0, then there exists some c in (0,1) such that cf^(prime)(c)-f(c)=0 cf^(prime)(c)+cf(c)=0 f^(prime)(c)-cf(c)=0 cf^(prime)(c)+f(c)=0

If f'(x)=k(cos x-sinx) , f'(0)=3 , f((pi)/(2))=15 , find f(x)

If f(x-y),f(x)f(y),a n df(x+y) are in A.P. for all x , y ,a n df(0)!=0, then (a)f(4)=f(-4) (b)f(2)+f(-2)=0 (c)f^(prime)(4)+f^(prime)(-4)=0 (d)f^(prime)(2)=f^(prime)(-2)