Home
Class 12
MATHS
Sum of the squares of all integral value...

Sum of the squares of all integral values of a for which the inequality `x^(2) + ax + a^(2) + 6a lt 0` is satisfied for all `x in ( 1,2)` must be equal to

A

90

B

89

C

88

D

91

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the squares of all integral values of \( a \) for which the inequality \( x^2 + ax + a^2 + 6a < 0 \) is satisfied for all \( x \) in the interval \( (1, 2) \). ### Step-by-Step Solution: 1. **Set up the inequality for \( x = 1 \) and \( x = 2 \)**: - For \( x = 1 \): \[ 1^2 + a(1) + a^2 + 6a < 0 \implies 1 + a + a^2 + 6a < 0 \implies a^2 + 7a + 1 < 0 \] - For \( x = 2 \): \[ 2^2 + a(2) + a^2 + 6a < 0 \implies 4 + 2a + a^2 + 6a < 0 \implies a^2 + 8a + 4 < 0 \] 2. **Find the roots of the quadratic inequalities**: - For \( a^2 + 7a + 1 < 0 \): - The roots can be found using the quadratic formula: \[ a = \frac{-7 \pm \sqrt{7^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-7 \pm \sqrt{49 - 4}}{2} = \frac{-7 \pm \sqrt{45}}{2} = \frac{-7 \pm 3\sqrt{5}}{2} \] - Approximate values: \[ a_1 \approx \frac{-7 + 6.7}{2} \approx -0.15, \quad a_2 \approx \frac{-7 - 6.7}{2} \approx -6.85 \] - Thus, the interval for this inequality is \( (-6.85, -0.15) \). - For \( a^2 + 8a + 4 < 0 \): - The roots are: \[ a = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{-8 \pm \sqrt{64 - 16}}{2} = \frac{-8 \pm \sqrt{48}}{2} = \frac{-8 \pm 4\sqrt{3}}{2} = -4 \pm 2\sqrt{3} \] - Approximate values: \[ a_1 \approx -4 + 3.46 \approx -0.54, \quad a_2 \approx -4 - 3.46 \approx -7.46 \] - Thus, the interval for this inequality is \( (-7.46, -0.54) \). 3. **Find the intersection of the intervals**: - The intervals are \( (-6.85, -0.15) \) and \( (-7.46, -0.54) \). - The intersection is \( (-6.85, -0.54) \). 4. **Identify integral values of \( a \)**: - The integral values of \( a \) in the interval \( (-6.85, -0.54) \) are \( -6, -5, -4, -3, -2, -1 \). 5. **Calculate the sum of the squares of these integral values**: \[ (-6)^2 + (-5)^2 + (-4)^2 + (-3)^2 + (-2)^2 + (-1)^2 = 36 + 25 + 16 + 9 + 4 + 1 = 91 \] ### Final Answer: The sum of the squares of all integral values of \( a \) is \( \boxed{91} \).
Promotional Banner

Topper's Solved these Questions

  • JEE MOCK TEST 10

    NTA MOCK TESTS|Exercise MATH|25 Videos
  • JEE MOCK TEST 12

    NTA MOCK TESTS|Exercise MATHEMETIC - SUBJECTIVE NUMERICAL|5 Videos

Similar Questions

Explore conceptually related problems

Find all values of a for which the inequality (a+4)x^(2)-2ax+2a-6<0 is satisfied for all x in R.

The set of values of a for which the inequality,x^(2)+ax+a^(2)+6a<0 is satisfied for all x belongs(1,2) lies in the interval:

the smallest integral value of p for which the inequality (p-3)x^(2)-2px+3(p-2)>0 is satisfied for all real values of x, is

Number of intergral value of x satisfying the inequality (x^(2) + 6x - 7)/(|x + 4|) lt 0 is :

The sum of all integral values of 'a' for which the equation 2x ^(2) -(1+2a) x+1 +a=0 has a integral root.

Find all values of a for which the inequation 4^(x^(2))+2(a+1)2^(x^(2))+4a^(2)-3gt0 is satisfied for any x .

Find the number of integral values of x satisfying the inequality, x^2-5x-6<0 .

Find the largest integral value of ''al' for which the inequality (3x^(2)-2(a+1)x+27)/(4x^(2)-x+2)<0 is satisfied by every x in R.

The set of real values of x satisfying the inequality |x^(2) + x -6| lt 6 , is

NTA MOCK TESTS-JEE MOCK TEST 11-MATH
  1. If p and q are two statements, then p vv ~ ( p Rightarrow ~ q) is ...

    Text Solution

    |

  2. The coordinates of the orthocenter of the triangle that has the coordi...

    Text Solution

    |

  3. On differentiating tan^(-1) [ ( sqrt( 1+ x^(2))-1)/( x) ] with respec...

    Text Solution

    |

  4. Sum of the squares of all integral values of a for which the inequalit...

    Text Solution

    |

  5. If f : ( 0, oo) rarr ( 0, oo) and f ( x ) = ( x )/( 1+ x ) , then f i...

    Text Solution

    |

  6. The mean and standard deviation of 100 observations were calculated...

    Text Solution

    |

  7. sum(k=1)^10(sin(2kpi)/11+icos(2kpi)/11)

    Text Solution

    |

  8. The value of underset( n rarroo)(lim) underset(r=1)overset(r=4n)(sum)(...

    Text Solution

    |

  9. The angle of elevation of a cloud from a point 250 m above a lake is 1...

    Text Solution

    |

  10. Let P be the relation defined on the set of all real number such that ...

    Text Solution

    |

  11. The general solution of the differential equation [2 sqrt( xy ) -x] dy...

    Text Solution

    |

  12. Let f: (-1,1)toR be a function defind by f(x) =max. {-absx,-sqrt(1-x^2...

    Text Solution

    |

  13. The value of 2sin^2theta+4cos(theta+alpha)sinalphasintheta+cos2(alpha+...

    Text Solution

    |

  14. If A = [{:(1,1,2),(1,3,4),(1,-1,3):}], B = adj A and C = 3A then (|ad...

    Text Solution

    |

  15. lim(x-> pi/2) ([1- tan (x/2)][1-sin x])/([1+ tan(x/2)][pi - 2x]^3)

    Text Solution

    |

  16. From the string abacabababcdced, if 5 letters should be selected , the...

    Text Solution

    |

  17. Let vec(a) and vec(b) be two unit vectors such that vec(a).vec(b)=0 Fo...

    Text Solution

    |

  18. Number of solution of 2^(sin(|x|)) = 3^(|cos x|) in [ -pi , pi ], is e...

    Text Solution

    |

  19. The point, which is at the shortest distance from the line x + y = 7 a...

    Text Solution

    |

  20. If y = tan^(-1) ((1)/(x^(2) + x + 1)) + tan^(-1) ((1)/( x^(2) + 3x + 3...

    Text Solution

    |