Home
Class 12
MATHS
intsinm xcosn xdx ,m!=n...

`intsinm xcosn xdx ,m!=n`

Text Solution

Verified by Experts

`2 sin A cos B=sin (A+B)+sin (A-B)`
therefore `sin {mx} cos {nx}=frac{sin (m+n) x+sin (m-n) x}{2}`
therefore The above equation becomes
` Rightarrow int frac{1}{2}(sin (m+n) x+sin (m-n) x) d x`
We know `int sin a x d x=frac{-1}{a} cos a x+c`
` ...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

cos xdx

The value f the integral int_(-pi)^pisinm xsinn xdx , for m!=n(m , n in I),i s 0 (b) pi (c) pi/2 (d) 2pi

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_m-2n(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4w h e nbot hma n dna r ee v e n((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))

STATEMENT-1 : If f(x)=int(dx)/(sin^(1//2)xcos^(7//2)x) , then the value of f((pi)/(4))-f(0) is equal to (12)/(5) . and STATEMENT-2 : To find the intsin^(m)xcos^(n)xdx if m+n=-ve even, then we can substitute tanx=t .

Reduction Formula for int sin^(m)x cos^(n)xdx

If intsin^(4)x cos^(3)xdx=(1)/(m)sin^(m)x-(1)/(n)sin^(n)x+c then (m,n)-=

If I_(m;n)=int_(0)^((pi)/(2))sin^(m)x cos^(n)xdx then show that I_(m;n)=(m-1)/(m+n)I_(m-2;n) and find I_(m;n) in terms of different combinations of m and n.

int x^(n)log xdx

intcot^nxcosec^2xdx, n!=-1

intcot^ncosec^2xdx , n!=-1