Home
Class 12
MATHS
intcosm xcosn xdx ,m!=n...

`intcosm xcosn xdx ,m!=n`

Text Solution

Verified by Experts

`2 cos A cos B=cos (A-B)+cos (A+B)`
therefore `cos {mx} cos n {X}=frac{cos (m-n) x+cos (m+n) x}{2}`
therefore, The above equatlon becomes
` Rightarrow int frac{1}{2}(cos (m-n) x+cos (m+n) x) {dx}`
...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

cos xdx

The value f the integral int_(-pi)^pisinm xsinn xdx , for m!=n(m , n in I),i s 0 (b) pi (c) pi/2 (d) 2pi

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_m-2n(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4w h e nbot hma n dna r ee v e n((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))

intcot^nxcosec^2xdx, n!=-1

intcot^ncosec^2xdx , n!=-1

int x^(n)log xdx

STATEMENT-1 : If f(x)=int(dx)/(sin^(1//2)xcos^(7//2)x) , then the value of f((pi)/(4))-f(0) is equal to (12)/(5) . and STATEMENT-2 : To find the intsin^(m)xcos^(n)xdx if m+n=-ve even, then we can substitute tanx=t .

int cot^(4)xdx cot xdx

int cot^(5)xdx cot xdx

intsec xdx=