Home
Class 12
MATHS
Evaluate : intsec^4 x tan x dx....

Evaluate : `intsec^4 x tan x dx.`

Text Solution

Verified by Experts

We have given,
`intsec^4 x tan x dx.`
Let
`I =int sec ^{4} x cdot tan x cdot d x `
`I=int sec ^{2} x cdot sec ^{2} x cdot tan x cdot d x `
`I=int(1+tan ^{2} x) tan x cdot sec ^{2} x cdot d x`
Since[`1+tan ^{2} x=sec ^{2} x`]
Let `tan x=t quad implies sec ^{2} x cdot d x=d t`
...
Promotional Banner

Topper's Solved these Questions

  • INCREASING AND DECREASING FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|232 Videos
  • INVERSE TRIGONOMETRIC FUNCTION

    RD SHARMA|Exercise Solved Examples And Exercises|523 Videos

Similar Questions

Explore conceptually related problems

intsec^3x tan^3x dx

intsec^6x tanx dx

intsec^8x tanx dx

Evaluate : int sec x tan x sqrt(4 sec^(2) x- 1 dx)

Evaluate : int (" sec x + tan x")/(" sec x- tan x") " dx "

intsec^(4) x dx

Evaluate: intsec^2x/sqrt (1+tanx)dx

Evaluate : int_(0)^(pi//4) tan x . sec x dx

Evaluate : int tan 2x tan 3x tan 5x dx

int(sec^(4)x)/(tan x)dx