Home
Class 12
MATHS
tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/...

`tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=pi/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equation for x : tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=(2pi)/3,x >0

Solve the following equation for x : tan^(-1)((2x)/(1-x^2))+cot^(-1)((1-x^2)/(2x))=(2pi)/3,x >0

Solve the following equation for x:tan^(-1)((2x)/(1-x^(2)))+cot^(-1)((1-x^(2))/(2x))=(2 pi)/(3),x>0

Prove that: tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2

Prove that: tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2

tan^(-1)((2x)/(x^(2)-1))+cot^(-1)((x^(2)-1)/(2x))=-(4 pi)/(3)

Prove that: tan^(-1)((1-x^(2))/(2x))+cot^(-1)((1-x^(2))/(2x))=(pi)/(2)

If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4) , find x.

If Tan^(-1)((x-1)/(x-2))+Cot^(-1)((x+2)/(x+1))=pi/4 , then x =

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx