Home
Class 9
MATHS
e^(x)log y=sin^(-1)x+sin^(-1)y...

e^(x)log y=sin^(-1)x+sin^(-1)y

Promotional Banner

Similar Questions

Explore conceptually related problems

e^xlogy=sin^(-1)x+sin^(-1)y

e^xlogy=sin^(-1)x+sin^(-1)y

Find dy/dx where e^x log y = sin^-1 x + sin^-1y

If y=e^(x) log (sin 2x), find (dy)/(dx) .

If y={(log)cos x sin x}{(log)_(sin x)cos x}^(-1)+sin^(-1)((2x)/(1+x^(2))) fin d (dy)/(dx)atx=(pi)/(4)

The solution of (dy)/(dx)=e^(x)(sin^(2)x+sin2x)/(y(2log y+1)) is

If x^(2)y^(2)=log(x+y)+sin e^(x)find(dy)/(dx)