Home
Class 12
MATHS
((1+i)/(1-i))^(4)+((1-i)/(1+i))^(4)=...

((1+i)/(1-i))^(4)+((1-i)/(1+i))^(4)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (i) (1-i)^(2)=-2i (ii) (1+i)^(4)xx(1+(1)/(i))^(4)=16 (iii) {i^(19)+((1)/(i))^(25)}^(2)=-4 (iv) i^(4n)+i^(4n+1)+i^(4n+2)+i^(4n+3)=0 (v) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25)=1+4i .

Simplify the following : (i) 1+ i^(5)+i^(10)+i^(15) (ii) (1+i)^(4)+(1+(1)/(i))^(4) (iii) i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

Simplify the following : (i) 1+ i^(5)+i^(10)+i^(15) (ii) (1+i)^(4)+(1+(1)/(i))^(4) (iii) i^(n)+i^(n+1)+i^(n+2)+i^(n+3)

(1+i)^(4)+(1-i)^(4)=

FInd the value of \ (1+i)^(4) xx (1 + (1)/(i))^(4)

Simplify : (1+i^(3))(1+(1)/(i))^(2)(i^(4)+(1)/(i^(4)))

Reduce (1/(1- 4i)-2/(1+i)) ((3-4i)/(5+i)) to the standard form .

Express the following complex numbers in the standard form a+ib:((1)/(1-4i)-(2)/(1+i))((3-4i)/(5+i))

The value of (1+i)^(4)(1+(1)/(i))^(4) is

(1)/(1-2i)+(3)/(1+4i)