Home
Class 11
MATHS
If for n in I , n > 10 ;1+(1+x)+(1+x)...

If for `n in I , n > 10 ;1+(1+x)+(1+x)^2++(1+x)^n=sum_(k=0)^n a_k*x^k , x!=0` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sum_(k=0)^(n)a_(k)|x-1|^(k), where a_(i)in R, then

Find the coefficient of x^k in 1 +(1 +x) +(1 +x)^2+.. +(1+x)^n (0 <=k<=n) .

The value of int_0^1 ( pi_(r=1)^n (x+r)) (sum_(k=1)^n 1/(x+k)) dx

Lt_(x to oo) (1)/(n^(3)) sum_(k=1)^(n)[k^(2)x]=

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =

Let (1+x^(2))^(2)*(1+x)^(n)=sum_(k=0)^(n+4)a_(k)*x^(k) If a_(1),a_(2) and a_(3) are iun AP, find n.

Let (1+x^2^2)^2(1+x)^n = sum _(k=0)^(n+4)a_k x^k. If a_1,a_2,a_3 are in rithmetic progression find n.

Let (1+x^2)^2 . (1+x)^n = Sigma_(k=0)^(n+4) (a_k).x ^k "if" a_1,a_2 & a_3 are in AP find n