Home
Class 12
MATHS
" Prove that "cos^(-1)(x)+cos^(-1)((x)/(...

" Prove that "cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))=(pi)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

Find the value of cos^(-1)(x)+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

If 1/(sqrt(2))

Find the value of cos^(-1)x+cos^(-1)((x)/(2)+(sqrt(3-3x^(2)))/(2))

Evaluate : cos^(-1)x+cos^(-1)[(x)/(2)+(sqrt(3-3x^(2)))/(2)]((1)/(2) le x le 1)

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)

Prove that 3cos^(-1)x=cos^(-1)(4x^(3)-3x),x in[(1)/(2),1]

Prove that: 3cos^(-1)x=cos^(-1)(4x^(3)-3x),x in[(1)/(2),1]

Prove that : "cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6)

Prove that : cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2)