Home
Class 14
MATHS
tan^(-1)((cos x-sin x)/(cos x+sin x))=(p...

tan^(-1)((cos x-sin x)/(cos x+sin x))=(pi)/(4)-x

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that cot^(-1)[(cos x+sin x)/(cos x-sin x)]=(pi)/(4)-x

Write the following functions in the simplest form : tan^(-1)((cos x -sin x)/(cos x + sin x)), -pi/4 lt x lt (3pi)/4

Write the following function in the simplest form: tan^(-1)((cos x-sin x)/(cos x+sin x)),x

tan ^ (- 1) ((cos x-sin x) / (cos x + sin x)) = tan ^ (- 1) ((1-tan x) / (1 + tan x))

Differentiate 'tan^(^^)(-1){(cos x+sin x)/(cos x-sin x)},|-pi/4

Write the simplest from of tan^(-1)((cos x -sin x)/(cos x+sin x)), 0 lt x lt pi/2

y=tan^(-1)((a cos x-b sin x)/(b cos x+a sin x)), where -(pi)/(2) -1

Differentiate, tan^(-1) ((a cos x- b sin x)/(b cos x + a sin x)), (-pi)/(2) lt x lt (pi)/(2) and (a)/(b) tan x gt -1

simplify : tan^(-1) ""((a cos x- b sin x )/(b cos x + a sin x ) ) (- pi )/(2) lt x lt pi/2 , a/b tan x gt -1