Home
Class 11
MATHS
9(cos^(2)33^(@)-cos^(2)57^(@))/(sin21^(@...

9(cos^(2)33^(@)-cos^(2)57^(@))/(sin21^(@)-cos21^(@))=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (cos^(2)33^(0)-cos^(2)57^(0))/(sin21^(0)-cos21^(0)) is

( cos^(2) 33^(@) - cos^(2) 57^@)/( sin 21^(@) - cos 21^(@))=

Prove that: (cos^(2)33^(@)-cos^(2)57^(0))/((sin^(2)(21^(0)))/(2)-(sin^(2)(69^(0)))/(2))=-sqrt(2)

(cos^(3)21^(@)+cos^(3)39^(@))/(cos21^(@)+cos39^(@))=

If x=sec57^(@) , then cot^(2)33^(@)+sin^(2)57^(@)+sin^(2)33^(@)+cosec^(2)57^(@)cos^(2)33^(@)+sec^(2)33^(@)sin^(2)57^(@) is equal to:

cos57^(@)+sin27^(@)=

Prove that: (cos^2 33^@-cos^2 57^@)/(sin^2(21/2)^@-sin^2(69/2)^@)=-sqrt(2)

A=(cos9^(@)-sin9^(@))/(cos9^(@)+sin9^(@)),B=(cos21^(@)+sin21^(@))/(cos21^(@)-sin21^(@)) and C=tan20^(@)+tan40^(@)+sqrt(3)tan20^(@)tan40^(@) then descending order is

sin^2 33^@+cos^2 57^@=