Home
Class 12
MATHS
If f(x)=x^(3)-4x+8, then f(5)=...

If `f(x)=x^(3)-4x+8`, then f(5)=

A

`67`

B

`97`

C

`113`

D

`147`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(5) \) for the function \( f(x) = x^3 - 4x + 8 \), we will substitute \( x \) with \( 5 \) in the function. ### Step-by-Step Solution: 1. **Write down the function**: The given function is \[ f(x) = x^3 - 4x + 8 \] 2. **Substitute \( x \) with \( 5 \)**: We need to find \( f(5) \), so we substitute \( x \) with \( 5 \): \[ f(5) = 5^3 - 4 \cdot 5 + 8 \] 3. **Calculate \( 5^3 \)**: Calculate \( 5^3 \): \[ 5^3 = 125 \] 4. **Calculate \( -4 \cdot 5 \)**: Now calculate \( -4 \cdot 5 \): \[ -4 \cdot 5 = -20 \] 5. **Combine the results**: Now substitute these values back into the equation: \[ f(5) = 125 - 20 + 8 \] 6. **Perform the addition and subtraction**: First, perform the subtraction: \[ 125 - 20 = 105 \] Then add \( 8 \): \[ 105 + 8 = 113 \] 7. **Final result**: Therefore, \[ f(5) = 113 \] ### Final Answer: \[ f(5) = 113 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS AND GRAPHS

    PRINCETON|Exercise Functions and Graphs Drill 1: No Calculator Section|5 Videos
  • FUNCTIONS AND GRAPHS

    PRINCETON|Exercise Functions and Graphs Drill 2: Calculator-Permitted Section|4 Videos
  • FUN WITH FUNDAMENTALS

    PRINCETON|Exercise Fundamental Drill 2: Calculator- Permitted Section|6 Videos
  • GEOMETRY

    PRINCETON|Exercise Geometry Drill 1: No calculator Section|4 Videos

Similar Questions

Explore conceptually related problems

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

If f(x)=x^(3)-4 , then the inverse of f=

If f(g(x))=4x^(2)-8x and f(x)=x^(2)-4, then g(x)=

Consider a function f:R rarr R defined by f(x)=x^(3)+4x+5 , then

If int_(2x^(2))^(x^(3)) (In x)f(t) dt=x^(2)-2x+5 , then f(8)=

If y=f(x)=(5x+3)/(4x-5) , then show that f(y)=x.

If f(x)=x^(2) + 5x-3 , then evaluate f(4)

If f(x) = 9x^(2) + 5x - 8 , then f(-2) = ?

If a function f:[2,oo)toR is defined by f(x)=x^(2)-4x+5 , then the range of f is

If f(x)=(3x+2)/(5x-3) , then f[f(x)] is equal to: