Home
Class 12
MATHS
If (x)/(y)=(4)/(3) and (x)/(k)=(1)/(2), ...

If `(x)/(y)=(4)/(3) and (x)/(k)=(1)/(2)`, what is the value of `(k)/(y)`?

A

`(3)/(8)`

B

`(2)/(3)`

C

`(3)/(2)`

D

`(8)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given ratios to find the value of \( \frac{k}{y} \). ### Step 1: Write down the given ratios We have two ratios: 1. \( \frac{x}{y} = \frac{4}{3} \) 2. \( \frac{x}{k} = \frac{1}{2} \) ### Step 2: Express \( k \) in terms of \( x \) From the second ratio \( \frac{x}{k} = \frac{1}{2} \), we can express \( k \) in terms of \( x \): \[ k = \frac{2x}{1} = 2x \] ### Step 3: Substitute \( k \) in the expression \( \frac{k}{y} \) Now we need to find \( \frac{k}{y} \): \[ \frac{k}{y} = \frac{2x}{y} \] ### Step 4: Substitute \( \frac{x}{y} \) from the first ratio From the first ratio \( \frac{x}{y} = \frac{4}{3} \), we can substitute \( \frac{x}{y} \) in our expression: \[ \frac{k}{y} = 2 \cdot \frac{x}{y} = 2 \cdot \frac{4}{3} \] ### Step 5: Calculate the value Now we calculate: \[ \frac{k}{y} = 2 \cdot \frac{4}{3} = \frac{8}{3} \] ### Final Answer Thus, the value of \( \frac{k}{y} \) is \( \frac{8}{3} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ARITHMETIC

    PRINCETON|Exercise QUICK QUIZ #7|3 Videos
  • ARITHMETIC

    PRINCETON|Exercise QUICK QUIZ #8|3 Videos
  • ARITHMETIC

    PRINCETON|Exercise QUICK QUIZ #5|3 Videos
  • ALGEBRA: CRACKING THE SYSTEM

    PRINCETON|Exercise Algebra Drill 2: Calculator-Permitted Section|6 Videos
  • FUN WITH FUNDAMENTALS

    PRINCETON|Exercise Fundamental Drill 2: Calculator- Permitted Section|6 Videos

Similar Questions

Explore conceptually related problems

If the lines (x-1)/2=(y+1)/3=(z-1)/4 and (x-3)/1=(y-k)/2=z/1 intersect, then find the value of k .

The value of k so that (x-1)/(-3) = (y-2)/(2k) = (z-4)/(2) and (x-1)/(3k) = (y-1)/(1) = (z-6)/(-5) may be perpendicular is given by :

Knowledge Check

  • The lines (x-2)/(1) = (y-3)/(1) =(z-4)/(-k) and (x-3)/(k)=(y-4)/(1) = (z-5)/(1) are coplanar if the values of k are

    A
    0 or -1
    B
    1 or -1
    C
    0 or -3
    D
    3 or -3
  • If x+y=2k-1, and x^(2)+y^(2)=9-4k+2k^(2) , what is xyin terms of k?

    A
    `k-2`
    B
    `(k-2)^(2)`
    C
    `(k+2)^(2)`
    D
    `k^(2)-4`
  • Similar Questions

    Explore conceptually related problems

    The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

    If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2) and (x-1)/(3k)=(y-5)/1=(z-6)/(-5) are at right angle, then find the value of k .

    If the lines (x)/(1)=(y)/(2)=(z)/(3), (x-k)/(3)=(y-3)/(-1)=(z-4)/(h) and (2x+1)/(3)=(y-1)/(1)=(z-2)/(1) are concurrent, then the value of 2h-3k is equal to

    Find the value of k so that the lines (1-x)/(3) = (y-2)/(2k) = (z-3)/(2) and (1+x)/(3k) = (y-1)/(1) = (6-z)/(7) are perpendicular to each other.

    The lines (x-2)/1=(y-3)/1=(z-4)/(-k) and (x-1)/k=(y-4)/2=(z-5)/1 are coplanar if a. k=1or-1 b. k=0or-3 c. k=3or-3 d. k=0or-1

    The number of real values of k for which the lines (x)/(1)=(y-1)/(k)=(z)/(-1) and (x-k)/(2k)=(y-k)/(3k-1)=(z-2)/(k) are coplanar, is