Home
Class 12
MATHS
if x greater than equal to 0 and less th...

if x greater than equal to 0 and less than equal to 1/2 then find the value of `tan[sin^-1{x/sqrt2+sqrt((1-x^2)/2)}-sin^-1x]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given 0 le x le 1/2 then the value of tan[sin^(-1){x/sqrt(2)+sqrt(1-x^(2))/sqrt(2)}-sin^(-1)x] is

Given 0 le x le 1/2 , then the value of : tan[sin^-1(x/sqrt2 + (sqrt(1-x^2))/sqrt2)- sin^-1x] is

Given 0 le x le 1/2 then the value of tan[sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x] is

Given 0 le x le (1)/(2) then the value of tan[sin^(-1){(x)/(sqrt(2)) + sqrt(1-x^(2))/(sqrt(2))}-sin^(-1)x] is

Given , 0lexle(1)/(2) , then the value of tan["sin"^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x] is

Given , 0lexle(pi)/(2) , then the value of tan["sin"^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x] is

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to