Home
Class 14
MATHS
" Show that "int(0)^(1)(x^(a)-1)/(log x)...

" Show that "int_(0)^(1)(x^(a)-1)/(log x)dx=log(a+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(x^(alpha)-1)/(log x)dx=

int_(0)^(1)(x^(a)-b^(b))/(log x)dx

int_(0)^(1)(x-1)/(ln x)dx

Show that int_(0)^(1)log((1-x)/(x))dx=0

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

" "int(1)/(log(x^(x))(log x+1))dx=

int_(0)^(1)(log x)dx

int_(0)^(1)(log(1+x))/(1+x)dx

int_(0)^(1)log((1-x)/(x))dx=0

Prove that int_(0)^(1)log((1)/(x)-1)dx=0 .