Home
Class 12
MATHS
lim(x rarr0)(5^(x)-1)/(x)=...

lim_(x rarr0)(5^(x)-1)/(x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(2^(5x)-1)/(x)

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(5^(x)-1)/(sqrt(4+x)-2)

lim_(x rarr0)(5^(x)-1)/(sqrt(4+x)-2)

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

Evaluate the following limit: (lim)_(x rarr0)(5^(x)-1)/(sqrt(4+x)-2)

lim_(x rarr0)(b^(x)-1)/(a^(x)-1)

lim_(x rarr0)((e^(x)-x-1)/(x))

The value of lim_(x rarr 0) ((e^(x)-1)/x)