Home
Class 12
MATHS
The function f(x) = max {(1 - x), (1 + x...

The function `f(x) = max {(1 - x), (1 + x), 2}, x in (- oo, oo)` is equivalent to

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=max_( is equivalent to ){(1-x),(1+x),2},x in(-oo,oo) is equivalent to

The function f(x)="max" {(1-x), (1+x), 2} is equivalent to

The domain of the function f(x) = sin ^(-1) ((|x| +5)/(x^2 +1)) is ( -oo , -a ] uu [ a,oo ). then a is equal to :

if f(x)=max{x^(2),x^(3),(1)/(64)} for all x in(0,oo)

The function f : (0, oo) rarr [0, oo), f(x) = (x)/(1+x) is

The function f : (0, oo) rarr [0, oo), f(x) = (x)/(1+x) is

Consider the function f : (-oo , oo) to (-oo , oo) defined by f(x) = (x^(2) - ax + 1)/(x^(2) + ax + 1) , 0 lt a lt 2 Let g (x) = underset(0) overset(e^(x))(int) (f'(t))/(1 + t^(2)) dt Which of the following is true ?

The function defined by f(x)={x^(3)-1;1

The function f(x)=log x-(2x)/(x+2) is increasing for all A) x in(-oo,0) , B) x in(-oo,1) C) x in(-1,oo) D) x in(0,oo)

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R