Home
Class 12
MATHS
For the function f(x)=int0^x(sint)/t dt ...

For the function `f(x)=int_0^x(sint)/t dt` where `x>0`

Promotional Banner

Similar Questions

Explore conceptually related problems

For the function f(x)=int_(0)^(x)(sin t)/(t)dt where x>0

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

For the functions f(x)= int_(0)^(x) (sin t)/t dt where x gt 0 . At x=n pi f(x) attains

The points of extrema of the function f(x)= int_(0)^(x)(sin t)/(t)dt in the domain x gt 0 are-

If f(x)=int_0^x(sint)/t dt ,x >0, then

If f(x)=int_0^x(sint)/t dt ,x >0, then

Find the range of the function f (x) = int _(0) ^(x) |t-1| dt, where 0 le x le 2

Which of the following is/are true for the function f(x)= int _(0) ^(x) ("cost")/(t ) dt (x gt 0) ?

Which of the following is/are true for the function f(x)= int _(0) ^(x) ("cost")/(t ) dt (x gt 0) ?

If f(x)=int_0^x (sint)/(t)dt,xgt0, then